

Industry Day Briefing

Fred G. Kennedy, Lt Col, USAF, Ph.D. **Tacfical Technology Office** Defense Advanced Research Projects Agency

2 October 2007

Motivation

2. Independent LEO to GEO transfer

1. Launch

Couple high specific power system with electric propulsion for persistent mobility, high residual power for numerous applications

System Attributes

- Responsive
- Capable
 - Rendezvous, servicing, repositioning
 - Persistent
- flexible
 - High maneuverability
 - Accommodates multiple payloads types
- Accommodates high power payloads

Characterization, Rendezvous, Servicing

4. Spacecraft

3. GEO repositioning

What is FAST?

- Technology Development Program
 - High Power Generation Subsystem (HPGS)
 - Delivers very high specific power: 130 W/kg (HPGS only), 40 W/kg (spacecraft)
 - 20 kWe total (EOL) for demo, should prove out scalability to higher power; 50-80 kWe or more envisioned for operational system
- Phase 1
 - Develop 130 W/kg, 20 kWe HPGS preliminary design
 - Performance simulation of complete HPGS
 - Address sun pointing and tracking effects on performance
 - Complete ground demonstration test plan in a relevant environment, to include all elements of the high power generation subsystem (HPGS):
 - Solar concentration
 - Solar collection
 - Power conversion and
 - Power distribution
 - Heat rejection

- Structures
- Deployment devices
- Sun pointing
- Sun tracking capability
- Assess HPGS interfaces with prospective payloads and propulsion systems.
- Phuse 2
 - Fabrication, assembly and end-to-end testing of the prototype HPGS in a relevant (i.e., simulated space) environment.

Today's State of the Art (SOTA)

Current on-orbit power system performance

- ≤ 3 W/kg (spacecraft)
- Planar arrays with solar cell efficiencies of up to 25%
- HS702: First halting attempts at concentrators (< 1.8:1 CR)
- Low voltage (28 V) power distribution, heavy harness

Current propulsion system performance

- Most systems use chemical monoand bipropellants, some use lowpower ion and Hall thrusters for stationkeeping (< 50 m/sec/year)
- Where would we have to mature SOTA to in order to be useful?
 - 40 W/kg** permits 50 kWe, 1,250 kg system to move LEO-GEO in 30 days
 - 40 W/kg** allows 50 kWe system to perform 180 degree transfers in GEO belt in under 7 days

A Focus On High Specific Power

- Seedling showed positive results at 40 W/kg (spacecraft)
 - Allows fast transfers LEO-GEO, rapid repositioning capability in GEO
- FAST will drive the high power generation subsystem state of the art to 130 W/kg (HPGS only)
 - Solar power collection elements, including concentration elements
 - Solar power conversion elements
 - Electrical power management and distribution systems, assuming payload line voltage requirements of no less than 100 V
 - Heat rejection elements required to dissipate waste heat produced in the conversion of sunlight to electricity in the space environment
 - All supporting structures, including pointing and deployment mechanisms and sensors
- Demonstrate a 20 kWe (EOL) architecture that can scale up to 80 kW at 130 W/kg

FAST Seedling Concept Vehicle

A revolutionary approach to achieving high power—and thus significantly increased mobility—in all orbits, LEO-GEO

Approach: Large, low areal density concentrating arrays and small solar cell panels replace heavy SOTA panels.

Electrical Power Production

Deployable concentrator (< 0.5 kg/m²)
High concentration ratio (40:1 to 100:1)
50 kWe at 30% photovoltaic cell efficiency
40 W/kg spacecraft specific power (>10x SOTA)

Propulsion

High I_{sp} electric thrusters (e.g., HET) Low propellant mass

Spacecraft (operational version)

1,250 kg wet mass in LEO 920 kg to GEO in under 30 days 50 kW for payload operations

Spacecraft (proposed demonstrator)

570 kg wet mass in LEO (Falcon I/MINOTAUR launch)
420 kg in GEO in under 30 days
20 kWe for payload operations, 10 GEO rephase moves

Vision: A "First Responder" in IMEO/GEO

- Servicing ("OE on Steroids")
 - Builds on Orbital Express legacy
 - Incorporates FREND legacy spacecraft docking and servicing features
 - Any spacecraft could be serviced/boosted/ repositioned

Client Vehicle Characterization

- Can perform long-standoff client characterization with high-power (50-80 kWe) radar, lidar
- Can transition to proximity operations for more detailed customer vehicle diagnosis

Rapid Response

 Rapid maneuver in high orbit permits the first Responder to approach and diagnose client asset anomalies

Compelling missions in high orbit demand new power and propulsion capabilities

FAST System

- Concentrators, PV arrays, radiators,
 Power Mgmt/Distribution, and thruster
 subassemblies can be traded to reduce
 overall system risk
- Key challenge is system-level integration and performance characterization of these elements
- Specific challenges include:
 - Deployment of concentrator and radiator assemblies
 - Precision sun-pointing and tracking
 - Thermal and electrical interfaces between power system elements
 - Dynamic disturbances during translation
 - Comprehensive thermal modeling of FAST and spacecraft
- Validation will occur at FAST system level in relevant environment (thermal high vacuum, with collimated solar source and integrated propulsion)

Key Technology Enablers

- Lightweight Solar Energy Concentration
 - Solar radiation: 1352 W/m² (earth orbit)
 - Low areal density ($< 0.5 \text{ kg/m}^2$)
 - Requires precision deployment of large stowed structure
 - Cells must survive high flux (40:1 to 100:1) and possibly elevated temperatures
- Thermal Mangement System
 - High power → high heat rejection
 - At 50 kWe and 30% efficiency, 120 kWt of waste heat must be rejected at low temp
 - NH₂ pumped loops are heavy, complex
 - Alternatives include advanced technology heat pipes and lightweight C-C radiator fins at operating temperatures > 250 C
- Power management/distribution
 - High voltage PMAD, high temp electronics
 - Low weight, broad power range

Key Technology: Solar Concentrator

Key Requirements

- High specific power
- Package-able for small to medium class launch vehicle
- Lightweight / large collector area

Derived characteristics

- Stowable / deployable
- Concentration ratio (40-100:1)
- Heat rejection
- Pointing ($\leq 2 \text{ deg/axis}$)

Technology options

- Rigid, deployed panels
- Inflatable torus
- Stretched lens array

Extruded, Overlaid Fresnel "strips"

pivot panel begins ~350-degree rotation about hub

pre-loaded & latched

ΙI

Key Technology: Lightweight Heat Rejection

Heat Rejection System Design Trade

Revolutionary thermal management technology on backside of solar cells

savitsajdo margor¶ 📑

- Maintain solar cell arrays within operating temperature limits Lightweight -

Derived characteristics

- 30 kWe power system (FAST Demo)
- 107 kWt heat rejection
- Operating temperature ≤ max solar

 O° O∑ eunim enutareqmet gnitareqo lles

enoitqo ygolondəəT 📑

- Radiative Fins (Carbon-Carbon)
- Conventional Heat Pipe
- eqiq tasH beanavbA -
- dool badmud -

Notional Program Plan

- Phase 1 HPGS Preliminary Design (~6 months)
 - Preliminary HPGS design complete, including end-to-end ground test demonstration plan
 - Specific Power = 130 W/kg
 - Total Power = 20 kWe
 - Simulation of HPGS performance including solar concentrator, power conversion, heat rejection, structure and deployment, plus sun pointing and tracking effects
 - Assess HPGS interfaces with prospective payloads and propulsion systems
- Phase 2 HPGS Ground Testing (~12 months)
 - Perform integrated power system ground testing to demonstrate power collection, generation, and heat rejection (PCGR) in representative environment and duration (30 days)
 - Design meets
 - Specific Power = 130 W/kg
 - Total Power = 20 kWe
 - Solar concentrator areal mass of 0.5 kg/m²
 - Radiator areal mass of 1.0 kg/m²
 - Show design can scale to 80 kWe (or greater)

Program Funding and Schedule

Funding

We expect to fund multiple parties through PDR, then downselect to one contractor (this contractor will build and test the HPGS)

Events

- FAST Industry Day 02 Oct 07
- BAA Release 05 Oct 07
- Proposals Due 04 Dec 07

- Award(s) March 2008

Notional Spacecraft Demonstration (TBD)

BACKUP

Mobility

- Extremely limited at present
 - Most onboard propulsion used for drag compensation, stationkeeping, some rephasing in GEO (e.g., life-limiting DSCS move during 1991 Desert Storm campaign)
 - Electrical propulsion proven on-orbit for reaction control, some stationkeeping
 - Insufficient power to use EP as orbit transfer system
- Example: Orbital Express
 - Two major objections from AF, NRO
 - System cannot service legacy spacecraft
 - System cannot reach objects of interest (insufficient mobility)
- FAST changes the equation
 - Combination of high delta-V (> 6 km/sec) and high power allow FAST-enabled s/c to:
 - Launch to LEO and move to GEO (6 km/sec) in one month or less
 - Numerous 180 degree rephasing maneuvers in GEO, one week per move or less (≤ 100 m/s)
 - Can move between any sun-synchronous orbit between 300 and 5,000 km (inclinations of 96 138°)